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Abstract— In visual robot self-localization, graph-based scene
representation and matching have recently attracted re-
search interest as robust and discriminative methods for self-
localization. Although effective, their computational and storage
costs do not scale well to large-size environments. To alleviate
this problem, we formulate self-localization as a graph classi-
fication problem and attempt to use the graph convolutional
neural network (GCN) as a graph classification engine. A
straightforward approach is to use visual feature descriptors
that are employed by state-of-the-art self-localization systems,
directly as graph node features. However, their superior
performance in the original self-localization system may not
necessarily be replicated in GCN-based self-localization. To
address this issue, we introduce a novel teacher-to-student
knowledge-transfer scheme based on rank matching, in which
the reciprocal-rank vector output by an off-the-shelf state-of-
the-art teacher self-localization model is used as the dark knowl-
edge to transfer. Experiments indicate that the proposed graph-
convolutional self-localization network (GCLN) can signifi-
cantly outperform state-of-the-art self-localization systems, as
well as the teacher classifier. The code and dataset are available
at https://github.com/KojiTakeda00/Reciprocal rank KT GCN.

I. INTRODUCTION

In visual robot self-localization, graph-based scene repre-
sentation and matching have attracted recent research interest
as robust and discriminative methods for self-localization.
For example, in [1], an image-based self-localization ap-
plication was addressed by representing each view image
frame as a graph node and by connecting neighboring image
frames via graph edges. In [2], a subimage-based self-
localization application was addressed by representing se-
mantically segmented regions as graph nodes and connecting
neighboring segments via graph edges. In these applications,
a query scene graph is matched against each map graph
according to the similarity of graph node descriptors (e.g.,
image descriptors [3], region descriptors [4]) and the graph
structure. Although they are effective, their computational
and storage costs increase in proportion to the environment
size and do not scale well to large environments.

To alleviate this problem, we formulate self-localization as
a graph classification task and use the graph convolutional
neural network (GCN) as a graph classification engine.
Our approach, wherein the GCN is used as a scene graph
classifier, is analogous to the recent paradigm of using a con-
volutional neural network (CNN) as a scene image classifier
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Fig. 1. We propose the use of the reciprocal-rank vector as the dark
knowledge to be transferred from a self-localization model (i.e., teacher) to
a graph convolutional self-localization network (i.e., student), for improving
the self-localization performance.

[5]. We inherit desirable properties of the classification task
formulation, such as the flexibility in defining place classes
[6], compressed classifier model [7], and high classification
speed [8]. A key difference from the image classifier tasks
is that the input visual data must be translated to graph data
before being input to the GCN. This problem is the main
focus of the present study.

A straightforward approach is to employ visual feature
descriptors used by state-of-the-art self-localization systems,
such as CNN-based [3], GAN-based [9], and autoencoder-
based features [10], directly as graph node features. However,
the main concern is that visual feature descriptors are not
optimized for graph convolutions. In theory, their superior
performance in the original self-localization system may
not necessarily be replicated in GCN-based self-localization.
Our experimental results indicated that the self-localization
performance deteriorated when visual feature descriptors
were directly used as a graph node feature descriptor in the
GCN model.

To address this issue, we introduce a novel teacher-to-
student knowledge-transfer scheme based on rank matching
[11] (Fig. 1), inspired by our previous studies [12]–[14]. The
basic idea is to introduce a state-of-the-art self-localization
model (e.g., bag-of-words image retrieval [15], object pro-
posal and matching [4], and deep image feature descriptor
[3]) as a teacher classifier. This approach is inspired by the
rank-matching loss used by recent transfer-learning schemes
[11], where rank values are employed as the dark knowledge
transferred from the teacher classifier to the student classifier.
While rank transfer has been used in transfer learning with
CNNs, its use in feature transfer with GCNs is non-trivial
and was addressed for the first time in this study.



Fig. 2. System architecture.

The main contributions of this work are summarized as
follows: (1) We propose a novel graph node descriptor,
which transfers the prediction of an off-the-shelf state-of-
the-art teacher self-localization model to the student GCN
classifier. (2) We show that a class-specific reciprocal-rank
vector is a proper and effective representation of the dark
knowledge to transfer. (3) We experimentally show that
the proposed graph-convolutional self-localization network
(GCLN) can significantly outperform state-of-the-art self-
localization systems, as well as the teacher classifier. (4) We
make the code and dataset publicly available1.

II. RELATED WORK

Visual feature descriptors for visual robot self-localization
have been intensively studied. Recently, the use of interme-
diate features of deep neural networks (e.g., CNN [3], GAN
[9], and autoencoders [10]) as discriminative and invariant
visual image descriptors has become common. Additionally,
the bag-of-words model has been used as a highly efficient
image descriptor in state-of-the-art self-localization systems
[15]. Moreover, it is straightforward to extend such an image
descriptor to a subimage descriptor by segmenting images
into subimages [4]. The effectiveness of image features has
also been shown in several graph-based place recognition
frameworks. In [16], the feature similarity between query and
database images is represented in graphs, and performance
is improved over a simple feature matching method by using
diffusion operation. On the other hand, in [17], performance
of SeqSLAM is improved by removing the assumption that
the robot is moving at a constant speed, which is based on a
directed acyclic graph -based method. In [18], a covisibility
graph is used to encode the geometric information between
visual words, which is based on the graph kernel for graph
matching. However, the use of visual feature descriptors in
the GCN framework is not straightforward and has yet to be
investigated.

The GCN was recently developed and is one of the most
popular types of deep graph neural networks. The GCN
provides a flexible and descriptive model and has been
successfully used in applications where the traditional CNN
proved to be either inefficient or unsuitable (e.g., chemical
reactivity [19], web-scale image retrieval [20]). Recently, the
GCN has also been used in robotics and vision applications,
such as the representation and parsing of spatially sparse
three-dimensional (3D) point clouds [21]. Additionally, the
use of scene graph representation has recently attracted

1https://github.com/KojiTakeda00/Reciprocal rank KT GCN

Fig. 3. Single-view subimage-level scene graph (SVSL).

research interest. In [22], a new view-based GCN was pro-
posed, in which 3D shapes are recognized according to the
graphical representation of multiple views. In [23], the worst-
case graph matching method was proposed for addressing
the challenges caused by appearing and disappearing land-
marks, in which the spatial similarity of the landmarks with
the worst appearance similarity is maximized. However, in
the present study, we revisit a classical visual robot self-
localization application with the aim of improving existing
solutions.

The problem of visual robot self-localization has been
studied with regard to various aspects. Several studies have
focused on challenging self-localization scenarios, e.g., ho-
mogeneous orchard scenery [24], limited onboard resources
[25], and highly dynamic environments [26]. Furthermore,
advanced self-localization methodologies have been pro-
posed, such as visual feature selection [27], hierarchical lo-
calization [28], quantifying the self-localization safety [29],
key-frame selection [30], end-to-end self-localization [31],
augmenting the scan context [32], sequence-based matching
[33], geometric hashing [34], and persistence reasoning [35].
Additionally, the use of prior domain knowledge, e.g., Open-
StreetMap [36] and Google Earth [37], has become common.
In our previous studies, the ranking-based scene descriptors
were explored in the context of image change detection
[12], knowledge distillation [13], as well as rank fusion
[14]. However, our approach focuses on the fundamental
problem of scene modeling, which is orthogonal to and
would facilitate these existing frameworks.

III. SCENE GRAPH MODEL

In the proposed GCN self-localization framework, two
types of scene graph models are used: the single-view
subimage-level scene graph (SVSL) and the multi-view
image-level scene graph (MVIL), which are described in
Sections III-A and III-B, respectively (Fig. 2).

A. Single-view Subimage-level Scene Graph (SVSL)

The SVSL takes as input a single-view scene and converts
it into a subimage-level scene graph. In the implementation,
we use a total of four subimage nodes that correspond
to the entire image region [0, 0]×[1080, 800] and three
bounding boxes: CENTER [270, 200]×[810, 600], RIGHT
[780, 0]×[1080, 800], and LEFT [0, 0]×[300, 800]. As
shown in Fig. 3, in an SVSL graph, the edges extend in a star
shape from the entire image node to the other three subimage
nodes. While this scene graph model requires only a single-
view image as an input, the invariance of the graph depends
significantly on the invariance of the image segmentation.
This limitation does not affect the MVIL model (III-B).



Fig. 4. Multi-view image-level scene graph (MVIL).

It can be effective to use a semantic segmentation (SS)
technique to decompose an image into subimages instead
of fixed bounding boxes. For example, in [2], the method
of decomposing a scene into subimages via SS and con-
necting the segmented subimages via object-level edges
experimentally worked well under an ideal condition of
ground-truth segmentations. However, the good performance
was not replicated in our current implementation of GCN
self-localization. In a preliminary experiment, we attempted
to use a state-of-the-art SS technique [38] instead of the fixed
segmentation strategy, which was significantly affected by
segmentation noise.

B. Multi-view Image-level Scene Graph (MVIL)

The MVIL takes as input a view-sequence scene and rep-
resents it as an image-level scene graph with multi-attribute
frame image nodes and two types of graph edges: time and
attribute edges (Fig. 4). As an example, in experiments, we
consider at most K = 4 different image nodes, which are
obtained by converting an original input RGB image with
(K−1) different image filters: Canny, depth regression, and
SS, as shown in Fig. 4. A time edge connects the nodes
of successive image frames with the same attribute. An
attribute edge connects different attribute nodes of the same
image frame. (K −1) attribute images are connected to the
RGB image node via attribute edges, yielding a star shape
from the RGB image node to the (K − 1) attribute image
nodes, as shown in Fig. 4. To facilitate the invariance of
the time edge, the sampling of image frames is controlled
so that the travel distance between successive image frames
(connected by a time edge) becomes constant with regard
to odometry measurements. While a multi-view scene graph
requires as input a view-sequence, it is largely unaffected
by segmentation noise. This is an appealing property of the
MVIL model. The MVIL model is also related to sequence-
based approaches such as [39] and [40]. A key advantage
of the MVIL model against these existing approaches is
that it is able to process multi-modal input data, as we will
demonstrate in the experimental section.

The implementation details are as follows: We imple-
mented (K − 1) types of attribute images: Canny, depth,
and SS images, which were converted from an original
RGB image by using the Canny edge detector [41], deep
depth regressor [42], and Deeplab v3+ [38], respectively. The
weight parameters of the deep depth regressor and Deeplab
v3+ were pretrained on the KITTI dataset [43] and the

Fig. 5. Knowledge transfer on node feature descriptor.

Cityscapes dataset [44], respectively. The pixel values of an
SS image were defined by the color map in [44]. The length
of the view-sequence for the MVIL model was 10 frames,
with 2-m intervals.

IV. GCN SELF-LOCALIZATION

In this section, we describe the proposed GCLN frame-
work for lightweight and accurate self-localization based
on knowledge transfer (Fig. 2). In the proposed frame-
work, a lightweight representation of the scene graph is
obtained using knowledge transfer from an external teacher
self-localization model. Additionally, the accuracy of self-
localization can be higher than that of the teacher self-
localization model.

A. Knowledge Transfer

In knowledge transfer [45], the prediction results of a
teacher model are often used as the dark knowledge to
transfer. In particular, we propose the use of the (reciprocal-)
rank vector as the representation of such dark knowledge.
Many off-the-shelf self-localization systems (e.g., bag-of-
words systems [15], classification systems [46], and map-
matching systems [47]) can be modeled as ranking systems.
Therefore, our (reciprocal-) rank-based scheme has a broader
application area than existing knowledge-transfer schemes,
e.g., those where intermediate signals of the teacher systems
are used as the dark knowledge to transfer.

As an example, in our experimental system, a typical
nearest neighbor (NN) image classifier with a NetVLAD
image descriptor [3] was employed as the teacher model (Fig.
5). The teacher model used a visual image as an input, com-
puted the L2 nearest-neighbor distance from the query image
descriptor to the class-specific database image descriptors,
and then converted the distance values into a class-specific
rank value vector; a smaller rank value corresponded to a
better degree of matching. Such pairings of the input image
and output rank value vector are used as the dark knowledge
to transfer in our scheme. We observed that a reciprocal-rank
value vector is a good representation of an attribute-image-
node descriptor, as discussed in Section V.

B. GCN Classifier

This subsection describes the procedure for graph convo-
lution, focusing on the equation for forward propagation. A
scene graph is represented as G = (V,E), where V represents
the set of nodes and E represents the set of edges. Let
vi ∈ V denote a node and ei j = (vi,v j) ∈ E denote an edge
pointing from v j to vi. The graph is defined as an undirected
graph; i.e., whenever ei j exists, e ji exists. The neighborhood
of a node v is defined as N(v) = {u ∈ V |(u,v) ∈ E}. Each



node v has a feature vector h ∈ RD, where D is the num-
ber of dimensions of the feature vector. We performed an
experimental ablation study (Section V), in which not only
the class-specific reciprocal-rank vector but also the other
intermediate representations, such as the original NetVLAD
vector, class-specific NN-distance vector, and class-specific
rank vector, were considered as the node feature descriptor.

The graph convolution operation takes node vi in the
graph and processes it in the following manner. First, it
receives messages from nodes connected by the edge. Then,
the collected messages are summed via the SUM function.
The result is passed through a single-layer fully connected
neural network followed by a nonlinear transformation for
conversion into a new feature vector. In this study, we used
the rectified linear unit (ReLU) operation as the nonlinear
transformation, which is expressed as follows:

hnew
i = ReLU

(
W

(
∑

u∈N(vi)∪vi

hu

))
. (1)

Here, W represents an RD×F weight matrix, and D and F
represent the numbers of dimensions of the node feature
vector before and after the linear transformation, respectively.
The foregoing process can be generalized to the processing
of node features in the l-th GCN layer:

h(l)
i = ReLU

(
W(l−1)

(
∑

u∈N(vi)∪vi

h(l−1)
u

))
. (2)

The process was applied to all the nodes in the graph in each
iteration, yielding a new graph that had the same shape as
the original graph but updated node features. The iterative
process was repeated L times, where L represents the ID
of the last GCN layer. After the graph node information
obtained in this manner were averaged, the probability value
vector of the prediction for the graph was obtained by apply-
ing the fully connected layer and the softmax function. This
averaging operation is called “Readout.” For the probability
value vector of the output p, the operation is expressed as
follows:

p = Softmax

(
FC

(
1
|V | ∑

u∈V
hL

u

))
. (3)

where hu is a feature of node u after it passes through the
last GCN layer. For implementation, we used the Deep Graph
Library [48] on the Pytorch backend.

V. EXPERIMENTS

We conducted self-localization experiments to confirm the
effectiveness of the proposed method by using the publicly
available Oxford Robotcar Dataset [49].

A. Settings

The Oxford Robotcar Dataset was obtained by a robotic
vehicle-mounted camera when a robot car traveled along the
same route in different seasons and with different weather
and lighting conditions. Table I presents details regarding
the dataset used in this study. The onboard camera used

TABLE I
STATISTICS OF THE DATASET.

date weather #images detour roadworks
2015-08-28-09-50-22 sun 31,855 × ×
2015-10-30-13-52-14 overcast 48,196 × ×
2015-11-10-10-32-52 overcast 29,350 × ◦
2015-11-12-13-27-51 clouds 41,472 ◦ ◦
2015-11-13-10-28-08 overcast, sun 42,968 × ×

Fig. 6. Example of place partitioning.

was a PointGreyBumblebeeXB3 (BBX3-13S2C-38) trinoc-
ular stereo camera (the center camera, 1280×960×3, 16
Hz). To avoid self-reflections and self-occlusions due to the
vehicle, we used an image region of 1080×800 pixels (with
100 pixels from the left and right and 160 pixels from the
bottom removed).

To define the place class, the workspace of the Oxford
Robotcar Dataset was partitioned into a two-dimensional reg-
ular grid of place classes according to the ground-truth global
positioning system coordinates (Fig. 6). More formally, an
area surrounded by 0.001 degree of latitude and longitude
was defined as a one-place class. The number of classes for
these test seasons ranged from 82 to 86. The classes that
existed only for training in each season pair and the classes
with less than five images in the area were not used in the
experiments. “Unseen” classes, which existed only in the
test season, were used as-is. The parameters of the NetVLAD
descriptor were trained on the Pittsburgh (Pitts250k) dataset
[3].

A subsequence of length 20 [m] obtained by shifting
the first image frame by frame was sampled from the
entire image sequence and used as training/test samples.
For each dataset, all possible overlapping subsequences
with travel distance 20 [m] were sampled from the entire
image sequence and used as training/test samples. Those
subsequences that straddle different place classes were re-
moved. For single-view methods, the first image frame of
each subsequence is used as a query input. For multi-view
methods, each subsequence is represented by a length 10
view-sequence with 2-m intervals and used as a query input.

The number of GCN layers L was set as 2. The number
of dimensions of the intermediate representation was 256.
Thus, when the number of classes was C, the number of
dimensions of the feature vectors (from the bottom layer to
the top layer) was C→256→256→C. The node aggregation
method used the SUM operation and the ReLU activation
function. The number of epochs was set as 5. The batch size
was 32, and the learning rate was 0.001. The cross-entropy



TABLE II
AVERAGE TOP-1 ACCURACY.

Method Average Top-1 Accuracy
Ours 92.4

NetVLAD 87.9
SeqSLAM 2.9

loss function and the Adam optimizer were used.

B. Comparison Methods

We used NetVLAD [3] and SeqSLAM [50] as comparison
methods (Table II). The implementation of NetVLAD was
based on [51]. NetVLAD was used in a single-view image-
level self-localization scheme, in which the nearest-neighbor
matching of place classes in terms of the Euclidean distance
was performed. SeqSLAM was used as a multi-view image-
level self-localization scheme. The implementation of SeqS-
LAM was based on the C++ version of OpenSeqSLAM. The
parameters of SeqSLAM were optimized for the Nordland
dataset, and no parameter manipulation was performed. The
image IDs output by SeqSLAM were converted into the place
class IDs to which the images belonged, and then the class
IDs were simply used as outputs of the system.

C. Results

Fig. 7 presents example results of the proposed method,
where L2 norm nearest neighbor matching is used with
the output of the middle layer of GCN. As shown, the
proposed method was robust against illumination changes
and dynamic objects, owing to the Canny and SS image
filters. However, the proposed method was not suitable for
homogeneous scenery with no distinctive landmarks. This is
because none of the image filters employed by the method
(i.e., Canny, depth, SS) were robust against homogeneous
scenes. To compensate, prior domain knowledge, e.g., road
markings or the road topology, can be used as additional
graph node descriptors. We plan to investigate this in a future
study.

Computation time for GCN classification was 23.8 msec
per graph (Intel (R) Xeon (R) GOLC 6130 CPU @ 2.10
GHz). For the GCN training, the speed was satisfactory (170
sec for a size 31,835 training set) even with CPU. This
indicates that our approach can be implemented even on low-
cost hardware with moderate performance, such as that used
by small, inexpensive robots [52].

The results for the SVSL scene graph are presented in Fig.
8. For an ablation study, in addition to the proposed SVSL
scene graph, a naive scene graph without edge connections
was tested. As shown, the performance was better when edge
connections were used.

The results for the proposed and comparison methods
are presented in Figs. 9, 10 and 11. Comparing Figs. 8
and 9 reveals that the MVIL method using the reciprocal-
rank vector had the best performance. In Figs. 9, 10 and
11, the proposed method employs an MVIL scene graph
with raw RGB, Canny, and SS attribute image nodes (i.e.,
K = 3). First, the result for K = 2 is shown. In this study, we

TABLE III
PERFORMANCE RESULTS VERSUS THE GRAPH STRUCTURE.

Method Average Top-1 accuracy
Attribute edges and Time edges 92.3

w/o all edges 89.0
w/o attribute edges 91.5

w/o time edges 88.7
w/o attribute node/edge 91.7

TABLE IV
PERFORMANCE RESULTS FOR DIFFERENT COMBINATIONS OF K AND

IMAGE FILTERS.

number of nodes combination Average Top-1 accuracy

k=2
canny 92.1
depth 91.8

semantic 92.3

k=3
canny-depth 92.0

canny-semantic 92.4
depth-semantic 92.1

k=4 canny-depth-semantic 92.3

investigated which node feature is appropriate, which image
conversion method is compatible with it, and which graph
structure is optimal. Fig. 10 presents the dependencies of the
choice of the attribute feature descriptor on the performance.
Next, Fig. 11 presents the dependencies of the choice of
the attribute image on the performance, where the feature is
fixed to the reciprocal-rank vector, for the case of K = 2.
As shown, the method using a semantic image had the
highest accuracy. Clearly, the proposed method outperforms
the comparison methods, i.e., NetVLAD and SeqSLAM.

Table III presents the results for different graph structures
obtained using the reciprocal-rank method and K = 2 scene
graph structure with the SS attribute image. For nodes
without edge connection, there is no inter-node information
transmission in the convolution process and thus, the feature
translation is done independently for each node. As shown,
the As shown, the prediction performance was improved with
both the attribute and time edges, relative to the other graph
structures.

Table IV presents the performance results for different
combinations of image filters and the following numbers
of filters: K =2, 3, 4. As shown, the performance was
maximized when K = 3 filter set was used that consisted
of the RGB image, Canny, and SS conditions.

D. Discussion

We now examine why the performance was improved by
the proposed GCLN framework. For the SVSL scene graph,
it is considered that the performance was largely affected
by the degree of invariance of the image segmentation. The
MVIL scene graph was successful for many difficult scenes
where the NetVLAD method often failed. One reason for
this is that knowledge from multiple image frames helped to
understand the scene structure, which was captured by the
GCN. Additionally, the attribute node inherited the desirable
properties of the multiple attribute images, e.g., robust-
ness against illumination changes (Canny), spatial invariance



Fig. 7. Example results. From left to right, the panels show the query scene, the top-ranked DB scene, and the ground-truth DB scene. Green and red
bounding boxes indicate “success” and “failure” examples, respectively.

Fig. 8. Performance results for single-view scene graph with and without
edge connections.

Fig. 9. Performance results for different training and test season pairs.

in non-dynamic scenes (depth), and appearance invariance
against seasonal shifts. The proposed method can combine
the strengths of different attribute images in a computation-
ally efficient manner. Moreover, the average performance is
not sensitive to the graph structure, the number of attribute
edges, or the combination of attribute images used, indicating
the flexibility of the proposed GCLN framework.

VI. CONCLUSIONS

We presented a framework for enhancing a visual robot
self-localization system using GCN. The proposed GCLN
framework combines the accuracy of state-of-the-art self-
localization systems and the flexibility and efficiency of the

Fig. 10. Performance results versus the choice of attribute image descriptors
(K=2).

Fig. 11. Performance results for individual training/test season pairs (K=2).

GCN. To this end, a novel teacher-to-student knowledge-
transfer scheme based on rank matching was introduced. Ex-
perimental results indicated that the proposed framework out-
performed the state-of-the-art methods and the teacher self-
localization system. The reciprocal-rank vector was found to
be effective dark knowledge to transfer, and in a future study,
we plan to develop additional knowledge-transfer strategies
for improving the GCN self-localization performance.
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