
An Incremental Scheme for Dictionary-based Compressive SLAM

Nagasaka Tomomi Tanaka Kanji

Abstract— Obtaining a compact representation of a large-
size pointset map built by mapper robots is a critical is-
sue for recent SLAM applications. This “map compression”
problem is explored from a novel perspective of dictionary-
based map compression in the paper. The primary contri-
bution of the paper is proposal of an incremental scheme
for simultaneous mapping and map-compression applications.
An incremental map compressor is presented by employing
a modified RANSAC map-matching scheme as well as the
compact projection visual search. Experiments show promising
results in terms of compression speed, compactness of data and
structure, as well as an application to the compression distance.

I. INTRODUCTION

Obtaining a compact representation of a large-size pointset
map built by mapper robots is a critical issue for recent
SLAM applications. This “map compression” problem has
been approached from a novel perspective of dictionary-
based data compression in our study [1] [2]. Applications of
a map compressor range from memory-intensive large-size
map building [3]- [5] to lightweight information sharing in a
robotic sensor network [6]- [8]. Another line of applications
is Kolmogorov complexity, as a universal similarity metric
(e.g. compression distance [9]) between any two maps [2], in
the context of information retrieval [10], semantic labeling
[11], as well as similarity clustering [12]. In the current
paper, an incremental scheme for the dictionary-based map
compression is presented in order to facilitate the incremental
mapping (SLAM) applications.

In the field of data compression, dictionary-based com-
pression is one of standard approaches. Its basic idea is
to replace patterns appearing in the data with reference to
patterns in a dictionary. For instance, text compression is
a process of replacing repetitive patterns (words) with refer-
ence to words in a given dictionary. In general, the dictionary
of repetitive patterns is given in advance for general purpose
compressor or learned on-the-fly from a given training data
(patterns). Given such a dictionary, patterns in the input data
are replaced by the reference to the corresponding patterns in
the dictionary. Dictionary learning and pattern matching are
two essential tasks for dictionary-based data compression.

In [2], the problem of batch map compression has been
approached from the viewpoint of dictionary-based data
compression [13]. The dictionary learning is formulated as a
recursive process of finding repetitive patterns appearing in

This work was partially supported by MECSST Grant in-Aid for Young
Scientists (B) (23700229), by KURATA grants and by TATEISI Science
And Technology Foundation.

T. Nagasaka and K. Tanaka are with Faculty of Engineering, University
of Fukui, Japan. tnkknj@u-fukui.ac.jp

Fig. 1. Incremental map compression. The input is a sequence of
submaps built by mapper robots during a SLAM task (top figure, 24
submaps, each is distinguished by different colors). A set of datapoints are
compactly represented in the form of compression trajectory, a sequence of
transformed datapoints (middle figure, random 100 examples of compression
trajectories). The incremental map compression is a process of updating a set
of compression trajectories by incorporating latest submap (bottom figures,
respectively corresponding to the 1st, 2nd, ..., 24th update).

input maps by employing modified RANSAC map-matching
algorithms [1]. The main focus of the study was on speed
of map compression algorithms as well as compactness
of compressed representations. On the other hand, a main
limitation of the previous approach is the batch assumption
it relies on. It was assumed that the mapping task has
been completed prior to the map-compression task. Such an
assumption is violated in the case of SLAM applications,
where the map should be incrementally compressed even
during the map building task. The problem of incremental
compression (while simultaneously building the map) is

challenging due to two requirements: (1) incrementality of
map compressor’s structure and data, and (2) space/time
efficiency of map compression algorithm.

Based on the consideration, this paper focuses on the
problem of incremental map compression. Let us simply
model a map as a sequence of submaps, each is a 2D
pointset map built by a mapper robot during a SLAM
task [14]. Let us consider a parallel setting, splitting the
SLAM and the map-compression (the map-matching) pro-
cessed in parallel [15]. Our incremental map compression
task is formulated as the problem of finding a compact
representation C(Ot) of latest submap Ot at time t, given
a sequence of compressed submaps C(O1), · · ·, C(Ot−1)
obtained so far (Fig.1). Let Size(·) denote the datasize [Byte]
of a representation. Compactness is evaluated in terms of
compression ratio Size(C(O1, · · · ,Ot))/Size(O1, · · · ,Ot), the
ratio of datasize between before and after the compression.
Our incremental map compressor C(·) is composed of two
independent building blocks. One is an incremental scheme
for data structure and algorithm employing RANSAC map-
matching. Another key building block is a visual search
which has now become a standard tool for accelerating a
SLAM module [4], i.e. saves data and structure by reusing
such an existing module. We employ the recently developed,
compact projection technique [16] with hashing structure as
an incremental and compact method for visual search, as
well as a compact binary landmark representation [17]. As
a central contribution, we focus on
• speed of compression algorithm
• compactness of data and structure

in order to facilitate the advanced SLAM applications. Effec-
tiveness of the techniques are evaluated in experiments using
radish dataset [18]. An application of the map compressor
to incremental estimation of the compression distance [9] is
also demonstrated. Improving the compression performance
of a map compressor gives more accurate estimate of the
compression distance.

A. Relation to Other Work

Map matching techniques have now become a key build-
ing block for mobile robot applications, including robotic
mapping [19] and robot self-localization [20]. The goal of
map matching is given a pair of input maps, to find a
“best” transformation (rotation, translation) by which one
map maximally overlaps with the other map. RANSAC is a
standard approach to the map matching problem [20]. In [15],
an “incremental” extension of the RANSAC map matching
was developed to address practical applications of simulta-
neous mapping and map matching. In [21], the approach was
speeded up by employing visual search techniques.

The basic idea of dictionary-based compression approach
is to exploit repetitive patterns, inherent in natural scenes
as well as in man-made environments [22]- [26], in order
to compactly model a scene and recover the missing data.
The approach is motivated by recent progresses in computer
vision techniques, including image recognition [22], com-
pression [23], completion [24], segmentation [12], dating

(a)

(b)

(c)

Fig. 2. Overview. (a) Batch map compression task addressed in [1] [2].
Patterns in the dictionary are recursively explained by smaller patterns. It
was assumed that compression of pattern dictionary is performed after find-
ing repetitive patterns has been finished. (b) Incremental map compression
task addressed in the current paper. It is required that compression has
to be performed while simultaneously finding repetitive patterns. (c) The
incremental map compressor.

[25], as well as super-resolution [26]. Our novel application,
pointset map is one of standard map formats in mobile
robotics. Due to recent progress in robotic mapping, methods
for building pointset maps (e.g. openslam [27]) as well as
datasets (e.g. radish [18]) are publicly available.

In the field of computer graphics, point clouds have
recently become a popular alternative to polygonal meshes
for three-dimensional geometric models. Although the cur-
rent implementation is described only in 2D, the proposed
approach could generalize to 3D as well.

In network robotics, acquiring dense 3D point clouds by
vision sensors, and storing or transmitting them via rate-
limited communication channels attract much interest in
recent years. In such a context, compactly modeling the scene
is essential for efficient operations, especially when it comes
to high-resolution 3D maps (e.g. point cloud library [28]).

The dictionary-based map compression approach is or-
thogonal to other potential techniques for map compression,
since the output data is in the same format as the input, i.e.
pointset maps. There exist many such orthogonal techniques,
including point cloud, geometry, time series and light field
compression, as well as other coding schemes such as run-
length, Huffman, predictive, fractal, etc.

II. MAP COMPRESSION APPROACH

This section explains the map compression approach (Fig.
2). II-A reviews the batch map compression task addressed
in [1] [2]. II-B presents the incremental scheme. II-C de-
velops an incremental compressor employing the modified
RANSAC map-matching scheme and the compact projection
visual search.

A. Dictionary-based Map Compression [1] [2]
As aforementioned, map matching is a basic building

block of a dictionary-based map compressor. A map match-
ing process aims to take a pair of pointset maps L,R as input
and search a “best” transformation (rotation, translation) T
by which L maximally overlaps with R. The overlapping
part A⊂ L (or B⊂ R) is viewed as a repetitive pattern. The
input maps L,R are represented by the overlapping parts A,B
as well as the remainder, non-overlapping (difference) parts
L′,R′, where

L′ = L\A, R′ = R\B. (1)

More formally, for each 2D point PA
i in A, there exists

a counterpart point PB
j in B that satisfies |PB

j −PA
i T |2 < ε ,

where ε is a preset threshold. For clarity, homogeneous
matrix expression is used for datapoints PA

i ,P
B
j and transfor-

mation T . Datapoints in A (or B) are not distinguished from
one another, and in such a case, there is no need to memorize
the identifier i (or j) of each datapoint. The threshold ε is
called spatial resolution of a map-matcher and impacts the
spatial accuracy of a map compressor. In implementation,
ε = 0.1m.

Based on the above terminology, ⟨B,L′,R′⟩ is viewed as a
compressed representation of the input ⟨L,R⟩ given T . First,
the datasize is smaller in former than in latter:

Size(⟨B,L′,R′⟩)≤ Size(⟨L′,R′⟩)+2Size(B) = Size(⟨L,R⟩).
(2)

Second, each point PA
i in A can be recovered from a point

PB
j in B given T :

PA
i ≃ PB

j T−1. (3)

The mappair L,R input to a map matching process can
be either two different maps or two identical maps. In the
latter case, trivial transformations with nearly zero rotation
and zero translation are not considered as candidates of the
best transformation.

The batch map compression task (Fig.2a) begins by initial-
izing a set of patterns called “pattern dictionary” D using the
original map O as an element pattern, then repeats the map-
matching process until the computation time is exhausted.
Each k-th map matching process takes maps L,R from the
dictionary D as input and searches the transformation Tk as
well as patterns B′,L′,R′, then inserts the patterns B′,L′,R′ to
the dictionary D. The dictionary D given the transformations
Y can be viewed as a compressed representation of the
original map O.

B. Incremental Scheme

Now, we turn to how to implement the above compressor
using incremental data and structure. Given a transformation
Tk output by a map matching process, each corresponding
point pair PA

i ,P
B
j gives an approximation

PA
i = PB

j T−1
k . (4)

Given a sequence of transformations T1 · · ·Tk, we obtain a
length k sequence of approximated datapoints

P(Tk)
−1, P(Tk−1Tk)

−1, · · · , P(T1 · · · Tk)
−1. (5)

Fig. 3. Compression trajectory. A compression trajectory represents a
sequence of transformed datapoints. Each point on the trajectory is an
approximation of an original datapoint. The approximation error is smaller
than ε and free from error accumulation.

Exploiting this, we can represent a length k+1 sequence of
datapoints in a compact form (S P), using a base point P and
a length k symbol sequence called compression trajectory

S = “T1 · · ·Tk” (6)

given a set of transformations

Y = (T1, · · · ,Tk). (7)

Fig.3 explains compression trajectory. For a raw submap that
has not been compressed yet, S is a null sequence.

A pattern M(∈ D) is represented by a common compres-
sion trajectory SM and a set of base points {PM}. Let lM

denote number of the base points of a pattern M, and kM

denote length of the compression trajectory. A set of lMkM

datapoints in a pattern M is represented in a compressed
form:

M =

 SM PM
1

...
...

SM PM
lM

 , SM = “T M
1 · · ·T M

kM ”. (8)

It is straightforward to implement the above expression by
employing an incremental data structure. In implementation,
a list structure is employed.

Also, the pointset in an original input map O is represented
in an incremental compressed form:

Z = ⟨X , Y ⟩=

⟨ S1 P1
...

...
Sl Pl

 ,

 T1
...
Tk

⟩
. (9)

The expressions X ,Y can be further compressed by a gen-
eral purpose compressor exploiting redundancy. In current
implementation, gzip compressor is used.

Since each pattern M in the dictionary represents lMkM

datapoints, there is a relationship:

|O|= ∑
M∈D

lMkM. (10)

According to the relationship, high compression ratio is ex-
pected when lM , kM per pattern are large. The characteristics
will be taken into consideration for the map compressor.

C. Incremental Map Compressor

This subsection presents an incremental map compressor
(Fig.2). The incremental compressor begins by initializing
timestamps t = 1, k = 1, and initializing the variable Z with
an empty pointset X = /0 and an empty transformation set
Y = /0. Every time a new submap Ot arrives, the compressor
inserts the corresponding pattern Mt to X

X ← X ∪Mt (11)

and repeats the following k-th step until the computation time
is exhausted:

1) Perform map-matching using two identical maps X , X
as input and a transformation Tk as output.

2) Search a set of correspondence ⟨PB
j ,P

A
i ⟩ and a trans-

formation Tk, as shown in eqn. (4).
3) Insert Tk to the transformation set Y .
4) For each corresponding point-pair ⟨PB

j ,P
A
i ⟩, update the

compression trajectory (S P) of PA
i in X by

P ← PA
i Tk, (12)

S ← S+ “Tk” (13)

then remove the datapoint PB
j from X .

In (13), ’+’ is an operation of appending two symbol se-
quences. The update (12) guarantees the approximation error
being free from error accumulation. The procedure for above
k-th step is summarized in the following.

Algorithm 1: DictionaryBasedCompressiveSLAM
input : Zk = ⟨Xk,Yk⟩.
output: Zk+1 = ⟨Xk+1,Yk+1⟩.
T ⇐ MapMatching (X).
U ⇐ SearchCorrespondences (X ,T).
Y ⇐ InsertSet (Y,T).
foreach ⟨PB

j ,P
A
i ⟩ ∈U do

PA
i .P⇐ MultiplyMatrix (PA

i .P,T).
PA

i .S⇐ AppendString (PA
i .S,“T ”).

X ⇐ DeleteSet (X ,PB
j).

end

Speeding up the map-matching process is a key require-
ment for efficient map compression. In the following, two
strategies for map-matching, RANSAC map matching and
the compact projection visual search are explained.

1) RANSAC map-matching: Map-matching process aims
to take a pair of maps as input and search a best transfor-
mation (rotation, translation) by which one map maximally
overlaps with the other map. RANSAC map matching repeats
the following steps (generation and evaluation of hypotheses)
until the computation time is exhausted [20]:

1) Randomly sample a small subset X ′ ⊂ X and generate
a hypothesis Tm of the transformation.

2) Compute the score o = ∑Pn∈X ω(Tm,Pn) by counting
the number of overlapped datapoints between mappair.

When the process finishes, the hypothesis with highest score
value is output as the best transformation. In implementation,

the score function ω(T,P) returns 1 iff there exists a match-
ing counterpart P′ in X which satisfies a matching condition
|PT −P′|< ε or 0 otherwise.

To speed up the RANSAC map-matching, preemption
scheme [29] is also introduced. The preemption scheme
(preemptive RANSAC) aims at better allocation of resources
for each point-hypothesis pair (T,P), taking into account
the tradeoff between diversification and intensification in
the search. We employ so-called preemptive breadth-first
rule which has been successful in robotic mapping and
localization applications [1] [30] [31]. This strategy employs
a decreasing preemption function ρ(n). At the initialization
stage, it randomly permutes the input datapoints 1, · · · ,ξ and
hypotheses 1, · · · ,η , and initializes the score of each m-th
hypothesis om = 0 (1≤m≤η). Then, it iterates the following
n-th step (1 ≤ n ≤ ξ) until there remains only one active
hypothesis:

1) For each hypothesis m(1 ≤ m ≤ ρ(n)), compute the
score om← om +ω(Tm,Pn).

2) Reorder the hypothesis ids so that the range 1, · · · ,ρ(n)
contains the best ρ(n) active hypotheses according to
the accumulated score om.

The preemption function is in the form:

ρ(n) = ⌊η2−⌊n/β⌋⌋, (14)

where ⌊·⌋ denotes downward truncation and β is a preset
constant called “block size”. Since the size of hypothesis
set reduces to the half every β -th iteration, the algorithm is
approximately O(βη) time cost.

2) Visual Search: The visual search aims at searching
repetitive patterns using the local feature descriptor (sig-
nature) as a cue. Incrementality and compactness of visual
search are two basic requirements for the simultaneous map-
ping and map-compression applications. Incrementality is a
requirement that insertion or deletion of a database element
incorporating latest measurement should be performed at
a constant cost. We are based on a hash table as a basis
of the database structure. Unlike other structures such as
trees, a hash table is essentially an incremental structure.
For instance, locality sensitive hashing (LSH) which exploits
the distance preserving properties of random projections was
successful in SLAM applications, as demonstrated in our
previous studies [30]. Compactness is a requirement that
the indexing structure should be compact. The current paper
employs the compact projection (CP) technique with binary
signatures. Compared with LSH which consumes significant
amount of memory, CP achieves 2-3 orders of magnitude
lower space cost [16].

Indexing and query of the compact projection database is
a fully incremental process. Let {xi} denote a size n set of
d-dim signature vectors. R denote a k×d random projection
matrix. Each element of R is an independent sample from a
standard normal distribution. The compact projection maps
a k-dim signature vector xi to a d-bit compact binary code:

yi = σ(Rxi), (15)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25

d
a

ta
s
iz

e
 [

M
B

y
te

]

update

compressed
original

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

c
o
m

p
re

s
s
io

n
 r

a
ti
o

update

Fig. 4. An example of compression result. Left: datasize of compressed
and original data. Right: compression ratio.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000 1200 1400

#
p
a
tt
e
rn

s

size [pts]

 1

 10

 100

 1000

 10000

 100000

 0 2 4 6 8 10

#
p

a
tt

e
rn

s

length [pts]

Fig. 5. Statistics of repetitive patterns. Left: size of patterns, a cumula-
tive histogram of number of datapoints in each pattern. Right: length of
compression trajectories, a frequency histogram.

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 10 100 1000

c
o

m
p

re
s
s
io

n
 r

a
ti
o

#hypotheses per update

naive
P

CP
P+CP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000

d
a
ta

s
iz

e
 [
M

B
y
te

]

#hypotheses per update

X
Y

X+Y

Fig. 6. Compression performance. Left: compression ratio of the final
map (i.e. after 24th update) vs. resource (#hypotheses) per update, for four
different map matching strategies “naive”, “P”, “CP” and “P+CP”. Right:
datasize [MByte] of X and Y (for the strategy “P+CP”).

where the function σ(v)(∈ {0,1}) quantizes the projections
according to their signs, - or +. The indexing process maps
a signature to a binary code by (15) and inserts the signature
to a hash table using the binary code as index. The query
process also maps a query signature xQ to a binary code yQ

and then selects from the hash table a set of signatures whose
codes have smallest Hamming distance from yQ.

In implementation, we use shape context descriptor which
has been used for SLAM applications [30]- [31]. In detail,
a polar grid with a radius χ with 16 rings and 16 wedges
centered at a given interest point is imposed and 16x16=256
dim histogram is computed by counting the number of
datapoints falling into each grid cell, and then the histogram
is L1 normalized and output as a 256 dim signature vector.
The map-matcher performs one query for every hypothe-
sis generation. In detail, one is randomly sampled from
signatures within a radius α-bit Hamming ball output by
the compact projection database, and is used as a basis
for hypothesis generation. The projection matrix of CP is
generated employing a pseudo random number generator,
and its random seed (i.e. O(1) space cost) can be viewed
as a compressed representation of the database structure.

III. EXPERIMENTS

The proposed approach is evaluated in terms of compres-
sion speed, compression ratio, parameter sensitivity, perfor-
mance comparison with batch scheme [2], as well as the
compression distance application [33]. A length 24 sequence

-20

-15

-10

-5

 0

 5

 10

 15

 20

 980 985 990 995 1000 1005 1010 1015 1020

decompressed
original

-4

-2

 0

 2

 4

 996 998 1000 1002 1004

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fig. 7. A decompression result. Top: the decompressed map superimposed
on the original map. Bottom: accumulative frequency of spatial error [m].

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 10 100 1000

c
o

m
p

re
s
s
io

n
 r

a
ti
o

#hypotheses per update

without CP
1
2
4
8

16

P+CP

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 10 100 1000

c
o

m
p

re
s
s
io

n
 r

a
ti
o

#hypotheses per update

without CP
1
2
4
8

16

CP

Fig. 8. Results for various feature size χ[m] for the CP visual search.

of submaps are generated from 7 datasets “albert”, “fr101”,
“fr079”, “kwing1”, “claxton2”, “abuilding” and “run1”, each
is a sequence of ego-motion and laser range measurements.
In detail, each dataset is divided into a set of length γ =
1000 measurements and the rest. The result is a 24 small
datasets. Then, each of the 24 small datasets is scan matched
into a pointset map. The result is a length 24 sequence
of submaps and is used as input to the incremental map
compressor. To evaluate compression performance (datasize,
compression ratio), a gzip compressor is employed as a
tool to estimate datasize of an original map as well as its
compressed representation. The origins of the 7 maps are
located far apart from each other, although in Fig.1 the maps

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5 10 15 20 25

c
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
e
c
]

update

naive
P

CP
CP+P

η = 10

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25

c
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
e
c
]

update

naive
P

CP
CP+P

η = 100

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25

c
o

m
p

u
ta

ti
o

n
 t

im
e

 [
s
e

c
]

update

naive
P

CP
CP+P

η = 1000

Fig. 9. Comparison between map-matching strategies, “naive”, “P”, “CP”
and “P+CP”. The vertical axis: average computation time [sec] per update
(i.e. per 100 map-matching). The horizontal axis: timestamp t (update ID).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100000 200000 300000

s
c
o
re

hypothesis ID

without CP
1m,0bit
2m,0bit
4m,0bit
8m,0bit

16m,0bit
1m,1bit
2m,1bit

4m,1bit
8m,1bit

16m,1bit
1m,2bit
2m,2bit
4m,2bit
8m,2bit

16m,2bit

 0

 5

 10

 15

 20

 25

 30

 306000 306500 307000

s
c
o
re

hypothesis ID

without CP
1m,0bit
2m,0bit
4m,0bit
8m,0bit

16m,0bit
1m,1bit
2m,1bit

4m,1bit
8m,1bit

16m,1bit
1m,2bit
2m,2bit
4m,2bit
8m,2bit

16m,2bit

Fig. 10. Comparison between a strategy with CP (“P+CP”) and a strategy
without CP (“P”). The strategy “P+CP” is investigated for several different
settings of the parameters χ and α (0bit, 1bit or 2bit). For clarity, hypotheses
are aligned in the ascending order of their scores. The right figure is a
closeup of the left figure.

are placed close to each other for the sake of visualization.
The number of iterations of the map-matching process per
update is set 100. The parameters α = 0, χ = 1[m] in default.
All experiments are performed on 2.4GHz Intel CPU and
2GB of RAM.

A. Snapshots

Shown in Fig.1 is an example of incremental map com-
pression task. A set of compression trajectories is incremen-
tally built as the mapping task goes on. Global and local
repetitive patterns are found both in the same environment
and in different environments. Overall, the incremental com-
pression result is stable, as shown in Fig.4. Fig.5 shows some
statistics of patterns in terms of size of pointset as well as
length of compression trajectory.

B. Compression Performance

Fig.6 shows the compression performance of the incre-
mental map compressor for four different map-matching
strategies, naive RANSAC map-matching (“naive”), pre-
emptive RANSAC map-matching (“P”), compact projection
(“CP”), and the combination (“P+CP”), for 10 different sizes
of hypothesis set η . One can see that two strategies using the
compact projection visual search (“CP”, “P+CP”) outperform
the other two. They reach compression ratio around 0.5 when
η (the number of hypotheses per update) is set larger than
20. The performance gain of the two strategies (over “P”,
“naive”) becomes small when large amount of resources (i.e.
η) is spent.

The current implementation is not optimized in terms of
compression ratio. Although it successfully explains the input
point cloud by a smaller point cloud X , the compression of X
is currently not optimized (i.e. a gzip compressor is simply
employed). X could be further compressed by employing

 0

 5

 10

 15

 20

 0 5 10 15 20 25

c
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
e
c
]

update

naive
P

CP
CP+P

η = 10

 0

 5

 10

 15

 20

 0 5 10 15 20 25

c
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
e
c
]

update

naive
P

CP
CP+P

η = 100

 0

 5

 10

 15

 20

 0 5 10 15 20 25

c
o
m

p
u
ta

ti
o
n
 t
im

e
 [
s
e
c
]

update

naive
P

CP
CP+P

η = 1000

Fig. 11. Map compression cost [sec]. The vertical axis: average com-
putation time [sec] per update (100 map-matching). The horizontal axis:
timestamp t (update ID).

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 10 20 30 40 50 60 70 80 90

c
o
m

p
re

s
s
io

n
 r

a
ti
o

total time [sec]

incremental
batch

naive

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10 12 14 16 18 20

c
o
m

p
re

s
s
io

n
 r

a
ti
o

total time [sec]

incremental
batch

P

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 10 20 30 40 50 60 70 80 90

c
o
m

p
re

s
s
io

n
 r

a
ti
o

total time [sec]

incremental
batch

CP

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 2 4 6 8 10 12 14 16 18 20 22

c
o
m

p
re

s
s
io

n
 r

a
ti
o

total time [sec]

incremental
batch

P+CP

Fig. 12. Incremental vs. batch. Either scheme is investigated for several
different settings of number of hypotheses η . The horizontal axis: compu-
tation time [sec] spent. The vertical axis: compression ratio of the final map
(i.e. after 24th update).

a general purpose point cloud compressor. Similarly, the
compression of symbols S is not optimized.

Fig.7 reports spatial accuracy of the decompressed map.
The decompressed map is reasonably accurate and the spatial
error is less than the preset spatial resolution, 0.1m.

C. Local Feature Size

In general, local feature size impacts retrieval performance
of the visual search as well as overall performance of the map
compressor. In our case, the size is controlled by the radius
χ[m] of the polar grid. Fig.8 summarizes the compression
performance for P+CP and for CP using 5 different radius χ
of polar grid. One can see that the performance is maximized
when χ is 8. Overall, better performance is observed when
CP is used than when it is not.

D. Effect of RANSAC map-matching

Fig.9 summarizes the time efficiency for RANSAC map-
matching. As also demonstrated in [30], the time cost for
RANSAC map-matching is approximately linear to the num-
ber of point hypothesis pairs. Overall, the time cost is lower
when preemption RANSAC is used than when it is not.

E. Effect of compact projection

Fig.10 investigates the effect of the compact projection
visual search. The compact projection aims at improving
quality of hypotheses generated at the hypothesis generation
stage. In Fig.10, we evaluate the quality of each hypothesis in
terms of the map-matching score assigned by the RANSAC

x0 x1 x2 x3 x4

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4

N
C

D

update

abuilding
claxton2

fr079
fr101

kwing1
run1

(b)

 0.1

 1

 10

 100

 0 1 2 3 4

re
la

ti
v
e

 c
h

a
n

g
e

update

abuilding
claxton2

fr079
fr101

kwing1
run1

(c)

Fig. 13. Incremental estimation of NCD. NCD between mappairs is
incrementally estimated while simultaneously building the map. The map
xt (t = 0,1,2,3,4) is incrementally built by incorporating the five submaps
from “albert”, as shown in Fig.a. The estimate NCD(xt ,y) of NCD between
latest map xt and each database map y (“abuilding”, “claxton2”, “fr079”,
“fr101”, “kwing1”, “run1”) is incrementally updated at each time t, as shown
in Fig.b. Fig.c visualizes relative change in NCD: NCD(xt ,y)/NCD(xt−1,y).
One can see that the NCD score converges even at the early stages of the
map building task, e.g. t = 1,2.

map-matcher. One can see that the quality is clearly improved
when CP is used than when it is not.

F. Map Compression Cost

Fig.11 reports the time cost for incremental map com-
pression tasks. In general, the map compression cost at each
time t is linear to the number of datapoints in latest X .
An advantage of an incremental scheme is the ability of
amortizing the computational cost over the period of map
building task.

G. Incremental vs. Batch

Fig.12 reports a comparison between the incremental
scheme and a batch scheme presented in [2]. For fair com-
parison, total of the amortized costs [sec] for the incremental
scheme is compared against the total cost for the batch
scheme. One can see that compression performance of the
proposed fully incremental scheme is comparable to the
batch one.

H. Incremental Estimation of NCD

Application to normalized compression distance (NCD)
is also demonstrated. As described in [2], NCD between
mappair ⟨x,y⟩ is obtained by

NCD(x,y) =
Size(Kxy)−min{Size(Kx),Size(Ky)}

max{Size(Kx),Size(Ky)}
. (16)

Here, ’xy’ denote concatenation of a mappair, an operation of
merging the two pointsets ⟨x,y⟩ locating one’s origin far apart
from the other’s. Kz denote the compressed representation of
a given map z. With the incremental compressor, incremental
estimation of NCD is successful as illustrated in Fig.13.

IV. CONCLUSIONS & FUTURE DIRECTIONS

The primary contribution of this paper is proposal of an in-
cremental scheme for the dictionary-based map compression
approach. An incremental map compressor is developed by
employing the modified RANSAC map-matching and the CP
visual search. Experiments show promising results in terms

of incrementality, compression ratio and speed, comparison
against batch scheme as well as an application to the com-
pression distance. The core of the scheme (Algorithm 1) is
easy to implement, in tens of lines of C code, if existing mod-
ule for map matching (as well as visual search) is reused. The
proposed dictionary-based approach is orthogonal to other
potential techniques for map compression, since the output
data is in the same format as the input, i.e. pointset maps.
Combining the orthogonal approaches would further improve
the compression performance of the presented approach.

One can image several further extensions and improve-
ments to the dictionary-based compressive SLAM approach.
Important three of them are discussed in the following.

A. Distributed SLAM

Currently, we rely on an assumption that the scenes
(submaps) are already perfectly rendered locally. In the
distributed SLAM context, there are paradigms that have
not been addressed in the paper: sub-mapping based on
filtering and sub-mapping based on non-linear optimization.
Robots can share information of their relative submaps in
order to update and improve the current solution. For both,
filtering and non-linear optimization, matrices representing
covariance or factorizations respectively has to be transmitted
if no approximations are applied. It would affect the quality
of the final patterns obtained. Dealing with such more
complex information through networks of transmission with
limited band as well as the inverse process to recover data
would be a direction of future research.

B. Semantic Scene Compression

The compression ratio of a dictionary-based compressor
depends on the type of environment as well as on the
robot’s trajectory. For instance, high compression ratio is
expected in highly structured environments, such as “Man-
hattan world”-like environments, where points belonging to
the dominant orthogonal planes could be viewed as repetitive
patterns. On the other hand, wilderness scenes are much
less structured. Introducing prior knowledge (such as “low-
resolutional map”, “previously visited scenes”, etc) within
the dictionary-based map compression will be presented in
our future paper.

C. Data Association Reuse

An advantage of the map-matching approach is its ability
of reusing the results of data association (e.g. map-matching,
visual search) which have been obtained during a SLAM
task. In modern SLAM approaches, submapping methods
perform data association during the process. In most of
the cases, it uses robust matching algorithms able to deal
with different noise levels and spurious. How to reuse that
information into the compression module in order to avoid
part of the map matching process leads to an interesting
research topic.

REFERENCES

[1] Nagasaka Tomoni and Tanaka Kanji. Dictionary-based map com-
pression using modified ransac map-matching. Proc. IEEE Int. Conf.
Robotics and Biomimetics (ROBIO), 2011.

[2] Nagasaka Tomoni and Tanaka Kanji. Dictionary-based map compres-
sion for sparse feature maps. Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2011.

[3] Juan Nieto, Tim Bailey, and Eduardo Nebot. Recursive scan-matching
slam. Robotics and Autonomous Systems, 55:39–49, 2007.

[4] Mark Cummins and Paul Newman. Accelerated appearance-only
SLAM. Proc. IEEE ICRA, 2008.

[5] Viorela Ila Kai Ni Frank Dellaert, Justin Carlson and Charles E.
Thorpe. Subgraph-preconditioned conjugate gradients for large scale
slam. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems
(IROS), 2010.

[6] Lars A. A. Andersson and Jonas Nygards. C-sam: Multi-robot slam
using square root information smoothing. Proc. IEEE ICRA, pages
2798–2805, 2008.

[7] Emanuele Menegatti, Andrea Zanella, Stefano Zilli, Francesco Zorzi,
and Enrico Pagello. Range-only slam with a mobile robot and a
wireless sensor networks. Proc. IEEE ICRA, pages 1699–1705, 2009.

[8] Arthur Martens Rene Iser and Friedrich M. Wahl. Localization of
mobile robots using incremental local maps. Proc. IEEE ICRA, 2010.

[9] Manuel Cebrián, Manuel Alfonseca, and Alfonso Ortega. The nor-
malized compression distance is resistant to noise. IEEE Trans.
Information Theory, 53(5):1895–1900, 2007.

[10] Sivic J. and Zisserman A. Video google: a text retrieval approach to
object matching in videos. Proc. IEEE Int. Conf. Computer Vision
(ICCV), pages 1470–1477, 2003.

[11] Cyrill Stachniss, Oscar Martinez Mozos, Axel Rottmann, and Wolfram
Burgard. Semantic labeling of places. 2005.

[12] Minsu Cho et al. Unsupervised detection and segmentation of
identical objects. Proc. IEEE Int. Conf. Computer Vision and Pattern
Recognition (CVPR), 2010.

[13] Willis Lang et al. Dictionary-based compression for long time-series
similarity. IEEE Trans. Knowl. Data Eng., 22(11), 2010.

[14] Shoudong Huang, Zhan Wang, and Gamini Dissanayake. Sparse local
submap joining filter for building large-scale maps. IEEE Transactions
on Robotics, 24(5):1121–1130, 2008.

[15] Tanaka Kanji and Kondo Eiji. Incremental ransac for online vehicle
relocation in large dynamic environments. Proc. IEEE ICRA, 2006.

[16] Kerui Min, Linjun Yang, John Wright, Lei Wu, Xian-Sheng Hua, and
Yi Ma. Compact projection: Simple and efficient near neighbor search
with practical memory requirements. Proc. IEEE Int. Conf. CVPR,
pages 3477–3484, 2010.

[17] Ikeda Kouichirou and Tanaka Kanji. Visual robot localization using
compact binary landmarks. Proc. IEEE ICRA, 2010.

[18] Andrew Howard and Nicholas Roy. The robotics data set repository
(radish). 2003.

[19] Shoudong Huang, Zhan Wang, Gamini Dissanayake, and Udo Frese.
Iterated slsjf: A sparse local submap joining algorithm with improved
consistency. IEEE Trans. Robotics, Visual SLAM, 2008.

[20] Neira J., Tardos J.D., and Castellanos J.A. Linear time vehicle
relocation in slam. Proc. IEEE ICRA, 1:427– 433, 2003.

[21] Saeki Kennichi, Tanaka Kanji, and Ueda Takeshi. Lsh-ransac: An
incremental scheme for scalable localization. Proc. IEEE ICRA, pages
3523–3530, 2009.

[22] Grant Schindler et al. Detecting and matching repeated patterns for
automatic geo-tagging in urban environments. Proc. IEEE Int. Conf.
CVPR, 2008.

[23] Wee Meng Woon et al. Achieving high data compression of self-
similar satellite images using fractal. Proc. Geoscience and Remote
Sensing Symposium, 2000.

[24] James Hays and Alexei A Efros. Scene completion using millions of
photographs. Proc. ACM Trans. Graphics, 26(3), 2007.

[25] Grant Schindler and Frank Dellaert. Probabilistic temporal inference
on reconstructed 3d scenes. Proc. IEEE Int. Conf. Computer Vision
and Pattern Recognition, 2010.

[26] Daniel Glasner, Shai Bagon, and Michal Irani. Super-resolution from
a single image. Proc. IEEE ICCV, 2009.

[27] http://www.openslam.org/.
[28] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library

(PCL). Proc. IEEE ICRA, 2011.
[29] David Nistér. Preemptive ransac for live structure and motion estima-

tion. Proc. IEEE ICCV, pages 199–206, 2003.

[30] Kenichi Saeki, Kanji Tanaka, and Takeshi Ueda. Lsh-ransac: An
incremental scheme for scalable localization. Proc. IEEE ICRA, pages
3523–3530, 2009.

[31] Ueda Takeshi and Tanaka Kanji. On the scalability of robot localiza-
tion using high-dimensional features. Proc. IAPR Int. Conf. Pattern
Recognition, 2008.

[32] K. Tanaka and E. Kondo. A scalable algorithm for monte carlo
localization using an incremental e2lsh-database of high dimensional
features. Proc. IEEE ICRA, pages 2784–2791, 2008.

[33] R. Cilibrasi. Statistical Inference Through Data Compression. PhD
thesis, University of Amsterdam, 2007.

