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Abstract— Map matching, the ability to match a local map
built by a mobile robot to previously built maps, is crucial
in many robotic mapping, self-localization, and simultaneous
localization and mapping (SLAM) applications. In this paper,
we propose a solution to the “map-to-text (M2T)” problem,
which involves the generation of text descriptions of local
map content based on scene understanding to facilitate fast
succinct text-based map matching. Unlike previous local feature
approaches that trade discriminativity for viewpoint invariance,
we develop a holistic view descriptor that is view-dependent
and highly discriminative. Our approach is inspired by two
independent observations: (1) The behavior of mobile robots
given a local map can often be characterized by a unique
viewpoint trajectory, and (2) a holistic view descriptor can be
highly discriminative if the viewpoint is unique given the local
map. Our method consists of three distinct steps: (1) First, an
informative local map of the robot’s local surroundings is built.
(2) Next, a unique viewpoint trajectory is planned in accordance
with the given local map. (3) Finally, a synthetic view is
described at the designated viewpoint. Because the success of
our holistic view descriptor depends on the assumption that
the viewpoint is unique given a local map, we also address the
issue of viewpoint planning and present a solution that provides
similar views for similar local maps. Consequently, we also
propose a practical map-matching framework that combines the
advantages of the fast succinct bag-of-words technique and the
highly discriminative M2T holistic view descriptor. The results
of experiments conducted using the publicly available radish
dataset verify the efficacy of our proposed approach. Further,
although this paper focuses on the standard 2D pointset map,
we believe that our approach is sufficiently general to be
applicable to a broad range of map formats, such as the 3D
and general view-based maps.

I. INTRODUCTION

Map matching, the ability to match a local map built
by a mobile robot to previously built maps, is crucial in
many robotic mapping, self-localization, and simultaneous
localization and mapping (SLAM) applications [1]-[7]. This
paper addresses a general 1-to-N matching problem in which
a 2D pointset map is given as a query, and the system
searches over a size N map database to find similar database
maps that are relevant under rigid transformation.

The classical approach to the map-matching problem is
to describe the appearance of each local map using high-
dimensional local invariant feature descriptors such as shape
features (e.g., polestar feature [8]), and perform feature
matching between query and database maps. One major
limitation of such an approach is the time consumed com-
paring the high-dimensional descriptors [9]. One of the most
popular approaches used to address this computational cost
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is the bag-of-words (BoW) approach, in which an unordered
collection of vector quantized feature descriptors is used for
compact map representation and efficient matching to pre-
built maps. Thus far, the BoW approach has been utilized
in various map-matching tasks, ranging from view image
sequence maps to 3D point cloud maps [5]-[7]. Our proposed
approach is also built on the BoW system in [10], in which
the BoW framework is successfully applied to the retrieval
of 2D occupancy maps using rotation invariant polestar
descriptors.

In this paper, we consider the “map-to-text (M2T)” prob-
lem, which involves the generation of text descriptions of
local map content based on scene understanding to facilitate
fast succinct text-based map matching (Fig.1). Unlike previ-
ous local feature approaches that trade discriminativity for
viewpoint invariance, we develop a holistic view descriptor
that is view-dependent and highly discriminative. Our ap-
proach is inspired by two independent observations:

« The behavior of mobile robots given a local map can
often be characterized by a unique viewpoint trajectory.
¢ A holistic view descriptor can be highly discriminative
if the viewpoint is unique given the local map.
An intuitive example is robots engaged in repeti-
tive/predefined activities such as patrolling or delivery, for
which it is natural to memorize views along a unique
trajectory for future navigation and place recognition, i.e.,
exploiting the prior knowledge. Our method consists of three
distinct steps:

1) First, an informative local map of the robot’s local

Fig. 1. Local map descriptor. The top row shows four different places in
the robot’s operating environment. The middle and bottom rows show two
independent local maps built by the robot at different times throughout the
day, each of which is warped into synthetic views by the proposed viewpoint
planner. To facilitate visualization, the figure is shifted and rotated so that
the viewpoint is placed at the center and the viewing direction is aligned
with the upper direction of the figure. As can be seen, similar synthetic
views are produced for similar local maps. Our method converts each view
into a holistic view descriptor.



surroundings is built.

2) Next, a unique viewpoint trajectory is planned in
accordance with the given local map.

3) Finally, a synthetic view is described at the designated
viewpoint.

The success of our holistic view descriptor is based on
the assumption that the viewpoint is unique given a local
map. Therefore, we also address the issue of viewpoint
planning and present a solution that provides similar views
for similar local maps. We also propose a practical map-
matching framework that combines the advantages of the
fast succinct BoW techniques (e.g., [11]), and the highly
discriminative M2T holistic view descriptor. The results of
experiments conducted using the publicly available radish
dataset [12] confirm the efficacy of our proposed approach.

II. RELATED WORK

Existing approaches to map matching can be classified
according to which feature descriptors are used, how they
are used, and whether the feature approach is global or local.
A global feature approach describes the global structure of
a scene using a single global feature descriptor (e.g., Gist,
HOG). In contrast, a local feature approach describes a scene
using a collection of local feature descriptors (e.g., SIFT).
In general, both approaches can be used complementarily;
however, the focus of this paper is on the latter approach.
As stated above, the BoW approach [11], in which a scene is
represented by an unordered collection of vector quantized
local features, is one of the most popular local feature ap-
proaches. Many of the state-of-the-art map-matching systems
are built on the BoW approach. There are several related
works on various types of features with different scales,
including texture [13], object configuration [2], point clouds
[14], and polestar [8].

In this paper, we focus on methods that describe not
only local feature descriptors but also the local keypoint
configuration among them. Among these methods, the part
model [15], in which a scene is modeled as a collection of
visual parts, is very popular. The model uses information
on relative positions as spatial cues to improve the dis-
criminative power of representation. However, existing part-
based models primarily focus on a small set of pre-learned
parts. Our approach is somewhat similar in concept to the
spatial pyramid matching approach in [16], as opposed to the
focus on kernel definition and improvement to discriminative
power of previous solutions.

Most of the works cited above either explicitly or implic-
itly assume that the viewpoint trajectory of the mapper robot
w.r.t. the local map is unavailable. In contrast, we explicitly
use the viewpoint information produced by our viewpoint
planner as a cue to compute the holistic view descriptor.
The success of our approach is based on the assumption that
the viewpoint planner provides a unique viewpoint given a
local map; therefore, we also consider the issue of viewpoint
planning. To the best of our knowledge, these two issues have
not been explored in existing work.

III. BASELINE SYSTEM

This section describes the baseline map-matching system,
on which our proposed approach is built, and which is
also used as a benchmark for performance comparison in
the experimental section, Section V. The main steps in the
procedure carried out by the system are as follows: (1)
Extraction of appearance features from each local map, (2)
translation of the extracted features to a BoW descriptor, and
(3) construction/retrieval of the map database from the BoW
descriptors. These three steps are explained in detail below.

A. Feature Extraction

We adopt the polestar feature for our purpose because it
has several desirable properties, including viewpoint invari-
ance and rotation independence, and has proven effective
as a landmark for map matching in previous studies [10].
The extraction algorithm consists of three steps (Fig.2): (1)
First, a set of keypoints are sampled from the raw 2D scan
points. (2) Next, a circular grid is imposed and centered at
each keypoint with different D = 10 radius. (3) Finally, the
points falling into each circular grid cell are counted and the
resulting D-dim vector outputted as the polestar descriptor.

B. BoW Descriptor

Next, we quantize each D-dim polestar vector to a 1-
dimensional code termed “visual word”. This quantization
process consists of three steps: (1) normalization of the D-
dim vector by the vector’s L1 norm, (2) binarization of each
i-th element of the normalized vector into b; € {0,1}, and
(3) translation of the binarized D-dim vector into a code
or a visual word: w, = ¥,;2'b;. Currently, the threshold for
binarization is determined as the mean of all the elements
of the vector. In consequence, a map is represented by an
unordered collection of visual words {w, | w, € [1,K]},
called BoW. Because we consider D-dim binarized polestar
descriptors, the vocabulary size is K = 210

C. Database Construction/Retrieval

We use the BoW representation for both the database
construction and retrieval processes. In the former process,
each local map is indexed by the inverted file system, by
using each word w, belonging to the map as an index. In
the latter process, all the indexes that have words in common
with the query map are accessed and the resulting candidate
database maps are ranked based on the frequency or the
number of words in common. A frequency histogram of
visual words is represented by a K-dim vector when we have
K words in the vocabulary. Similarity between a pair of BoW
frequency histograms is evaluated in terms of the histogram
intersection.

o

pointset and keypoints circular grids polestar descriptors

Fig. 2. Extraction of 2D polestar features from a 2D pointset map.



IV. PROPOSED SYSTEM

In this section, we outline our proposed system. As men-
tioned earlier, we built on the baseline system described in
Section III, and developed a novel holistic view descriptor.
Our method consists of three distinct steps: (1) build a local
map, (2) plan a unique viewpoint given the local map, and
(3) describe a synthetic view at the planned viewpoint. These
three steps as well as the modified map-matching algorithm
are detailed in the ensuing subsections.

A. Map Building

We first build a local map from a short sequence of
perceptual and odometry measurements; each measurement
sequence must be sufficiently long to cover rich photo-
metric and geometric information about the robot’s local
surroundings. In implementation, each sequence corresponds
to the robot’s 3 m run. Any map-building algorithm (e.g.,
FastSLAM, scan matching) can be used to register a mea-
surement sequence into a local map. We start a local map
every time the robot’s viewpoint moves along the path. This
results in a collection of overlapping local maps along the
path.

B. Viewpoint Planning

We wish to design a robust planner that provides a unique
viewpoint given a local map. (Note that the viewpoint is
not necessarily one of the actual viewpoints.) An occupancy
grid map is constructed from the 2D pointset map and used
as input to our viewpoint planner. Currently, we plan the
unique viewpoint near to the center of gravity (CoG) of all
the occupancy grid cells. This strategy is inspired by the
observation that the CoG can be unique given a local map
both in narrow corridors and in rooms.

In implementation, all the viewpoints on the actual view-
point trajectory are viewed as candidate viewpoints, and
among them, the closest candidate to the CoG is selected as
the viewpoint for the holistic view descriptor. Subsequently,
we determine the viewing direction based on the “dominant
direction” [17] of the occupancy grid cells. An intuitive
example of the dominant direction is Manhattan world-like
environments, where the two dominant directions should
be the two orthogonal directions of the manhattans world.
To estimate the dominant directions, we adapt the entropy
minimization criteria in [17].

C. Holistic View Descriptor

Let us now look at the holistic view at the planned
viewpoint and represent it in the BoW form. A key difference
of our BoW representation from that of previous works is that
we no longer need to rely on view invariant local features
that trade discriminativity for view invariance. Instead, we
can exploit the knowledge of viewpoint w.r.t. the ego-
centric local map coordinate to make the holistic descriptor
view-dependent, and thus highly discriminative. Our BoW
representation comprises appearance words and pose words.
The former represents the appearance descriptor of each local
feature w.r.t. the local map coordinate. Currently, we simply

use the descriptor of each local feature and quantize it into an
appearance word, as we did in Section III-B. The latter, pose
word, represents the keypoint of each local feature w.r.t. the
local map coordinate. During implementation, we quantize
the keypoint (x,y) w.r.t. the local map’s coordinate to obtain
the pose word (wy, wy) with resolution quantization step size
of 0.1 m. As a result, our visual word is in the form:

<WX7Wy7Wa>- (D
D. Map Matching

To index and retrieve the BoW map descriptors, we use the
appearance word w, as the primary index for the inverted file
system, while using the pose word (wy,w,) as an additional
cue for fine matching. The retrieval stage begins with a
search of the map collection using the given appearance word
w, as a query to obtain all the memorized feature points with
common appearance words, and filter out those feature points
whose pose word (wy,w)) is distant from that of the query
feature (wy,w)):

|Wx - ;| > Dy y, 2

[wy —wy| > Dy, 3)

to obtain the final shortlist of maps. Currently, we use a
large threshold, Dy, = 1[m], to suppress false negatives, i.e.,
incorrect identification of relevant maps as not being relevant.

V. EXPERIMENTS

We conducted map-matching experiments to verify the ef-
ficacy of the proposed approach. In the ensuing subsections,
we first describe the datasets and the map-matching tasks
used in the experiments, then present the results obtained
and conduct performance comparison against the baseline
system.

A. Dataset

For map matching, we created a large-scale map collec-
tion from the publicly available radish dataset [12], which
comprises odometry and laser data logs acquired by a car-
like mobile robot in indoor environments (Fig.3). We created
a collection of query/database maps using a scan match-
ing algorithm from each of six different datasets—namely,
“abuilding,” “albert,” “fr079,” “run,” “fr101,” and “kwing”—
which were obtained by the mobile robot’s 79-295 m travel,

Fig. 3. Datasets used in the experiments: “abuilding,” “albert,” “fr079,”
“run,” “fr101,” and “kwing” from the radish dataset [12].



corresponding to 521-5299 scans. Fig.1 shows examples of
the query and database maps. The map collection comprises
more than 13,000 maps. Our map collections contain many
virtually duplicate maps, which makes map matching a
challenging task.

B. Qualitative Results

Recall that the objective of map matching is to find a
relevant map from the map database for a local map given
as a query. The relevant map is defined as a database map
that satisfies two conditions: (1) Its pose is near the query
map’s pose within a predefined range, where the pose of a
map is defined as the CoG of the map’s pointset; and (2) its
distance traveled along the robot’s trajectory is distant from
that of the query map, such as in a “loop-closing” situation in
which a robot, after traversing a loop-like trajectory, returns
to a previously explored location.

For each relevant map pair, a map-matching task is
conducted using a query map and a size N map database,
which consists both of the relevant map and (N — 1) random
irrelevant maps. The spatial resolution of the occupancy map

BoWwW

M2T

Fig. 4. Examples of matching relevant pairs. Green and blue points indicate
the query and the database maps, while the red lines indicate correspondence
found by either method. To facilitate visualization, both maps are aligned
w.r.t. the true viewpoints.

is set to 0.1m. We implemented the map-matching algorithm
in C++, and successfully tested it on various maps. Figs. 4
and 5 show the results of map matching using the baseline
(“BoW”) and the proposed (“M2T”) systems. As can be
seen, fewer false positives appear in the case of the proposed
M2T method than the BoW method. This is because many
of the incorrect matches are successfully filtered out by the
proposed feature, which uses the keypoint configuration as
a cue. Quantitative evaluation results for our approach are
provided in the next subsection.

C. Quantitative Results

For performance comparison, we evaluated the averaged
normalized rank (ANR) [18] for both the BoW and M2T
methods. ANR is a ranking-based performance measure

BoW M2T

Fig. 5. Examples of matching irrelevant pairs.



in which a lower value is better. To determine ANR, we
conducted a number of independent map-matching tasks
with different queries and databases. For each task, the rank
assigned to the ground-truth database map by a map matcher
of interest was investigated and normalized by the database
size N. ANR was subsequently obtained as the average of
the normalized ranks over all the map-matching tasks. All
map-matching tasks were conducted using 13,592 different
queries and map databases.

Table I and Fig.6 summarize the ANR performance. The
proposed M2T system clearly outperforms the baseline Bow
system. By filtering out incorrect matches using the keypoint
configuration as a cue, the M2T method was able to success-
fully perform map matching in many cases, as shown in the
figure. In contrast, the BoW system based on appearance
words alone often does not perform well, mainly because
of the large number of false matches. The above results
verify the efficacy of our approach. Fig.7 shows the M2T
descriptors with applications to matching a relevant and an
irrelevant map pairs.

VI. CONCLUSIONS

In this paper, we focused on generating text descrip-
tion of local map content for fast succinct text-based map
matching. In particular, we presented a novel holistic view
descriptor that describes a synthetic view at a planned

TABLE I
SUMMARY OF ANR PERFORMANCE [%].
[ dataset | abuilding albert fr079  frI0I  kwingl  runl |
BoW 29.3 35.0 24.0 32.6 18.7 41.7
M2T 7.0 26.6 17.1 16.7 3.6 15.2
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Fig. 6. ANR performance for each dataset (horizontal axis: sorted query
map ID, vertical axis: ANR in [%]).

viewpoint. We addressed the issues involved in building a
local map, planning viewpoints, and computing the holistic
view descriptor. The results of experiments conducted with
the publicly available radish dataset confirm the efficacy of
our proposed approach. In the future, we plan to use the
presented M2T system for long-term operation of robots
in familiar environments. Although this paper focused on
the standard 2D pointset map, we believe our approach is
sufficiently general to be applicable to a broad range of map
formats, such as the 3D point cloud map, as well as general
view-based maps.
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