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Abstract— In this paper, we address the challenging problem
of single-view cross-season place recognition. A new approach
is proposed for compact discriminative scene descriptor that
helps in coping with changes in appearance in the environment.
We focus on a simple effective strategy that uses objects whose
appearance remain the same across seasons as valid landmarks.
Unlike popular bag-of-words (BoW) scene descriptors that rely
on a library of vector quantized visual features, our descriptor
is based on a library of raw image data (e.g., visual experience
shared by colleague robots, publicly available photo collections
from Google StreetView), and directly mines it to identify
landmarks (i.e., image patches) that effectively explain an input
query/database image. The discovered landmarks are then
compactly described by their pose and shape (i.e., library image
ID, and bounding boxes) and used as a compact discriminative
scene descriptor for the input image. We collected a dataset
of single-view images across seasons with annotated ground
truth, and evaluated the effectiveness of our scene description
framework by comparing its performance to that of previous
BoW approaches, and by applying an advanced Naive Bayes
Nearest neighbor (NBNN) image-to-class distance measure.

I. INTRODUCTION

Cross-season place recognition is one of the most chal-
lenging tasks in scene recognition (Fig.1). The appearance of
a location can vary depending on geometric conditions (e.g.,
object configuration, and fresh snow cover) and photometric
conditions (e.g., illumination). Such changes in appearance
lead to difficulties in scene matching, thereby increasing the
need for a highly discriminative, compact scene descriptor.

One of the most popular approaches to place recognition
is to translate each image into a bag of vector quantized
visual features, termed visual words, and then apply doc-
ument retrieval techniques that are based on the bag-of-
words (BoW) document model [1]. Despite its computational
efficiency and robustness, this approach suffers from vector
quantization errors, and often fails to handle appearance
changes across seasons in practice [2]. Thus far, many of
successful methods for cross-season place recognition are
variants of the SeqSLAM in [2]–[5], which requires view
image sequence measurements as the input. In contrast,
we consider a single-view based recognition with important
applications where a robot’s view only sparsely overlaps with
pre-mapped view.

In this paper, we address the challenging problem of
single-view cross-season place recognition. A new approach
is proposed for a compact discriminative scene descriptor
that helps in coping with changes in appearance in the en-
vironment. We focus on a simple effective strategy that uses
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objects whose appearances remain the same across seasons
as valid landmarks. Unlike popular BoW scene descriptors
that rely on a library of vector quantized visual features, our
descriptor is based on a library of raw image data (e.g., visual
experience shared by colleague robots, and publicly available
photo collections from Google StreetView). The library im-
ages need not be associated with spatial information such that
the viewpoint and orientation are known, nor be necessarily
taken in the target environment; thus they are cheaper than
database images and readily available. We directly mine the
image library to identify landmarks (i.e., image patches)
that effectively explain an input query/database image. The
discovered landmarks are considered valid if the image pair is
consistent in terms of both geometry and photometry. These
landmarks are then compactly described by their pose and
shape (i.e., library image ID, and bounding boxes (BBs)) and
used as a compact discriminative scene descriptor for the
input image. We collected a dataset of single-view images
across seasons with annotated ground truth, and evaluated
the effectiveness of our scene description framework by
comparing its performance to that of previous BoW methods,
and by applying an advanced Naive Bayes Nearest neighbor
(NBNN) image-to-class distance measure.

A. Related Work

Scene descriptors for visual place recognition (VPC) prob-
lems have been studied extensively. Local feature approaches
such as BoW scene descriptors have been widely studied
from various aspects, including self-similarity of images
[6], quantization errors [7], query expansion [8], database

Fig. 1. Single-view cross-season place recognition. The appearance of
a place may vary depending on geometric (e.g., viewpoint trajectories
and object configuration) and photometric conditions (e.g., illumination).
Such changes in appearance lead to difficulties in scene matching, and
thereby increasing the requirement for a highly discriminative, compact
scene descriptor. In this figure, the panels (top-left, top-right, bottom-left,
bottom-right) shows visual images acquired in autumn (AU:2013/10), winter
(WI:2013/12), spring (SP:2014/4), and summer (SU:2014/7), respectively.
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augmentation [9], vocabulary tree [10], and global spatial
geometric verification as post-processing [11]. As suggested
by our experimental results, previous research on cross-
season VPC have shown that the BoW scene model is
not sufficiently discriminative and often fails to capture the
appearance changes across seasons [2].

Global feature approaches such as the GIST feature de-
scriptor [12] (in which a scene is represented by a single
global feature vector) are compact and have high match-
ing speeds. In the robot vision community, global feature
approaches have been widely used in the context of cross-
season VPC [2], [13], [14]. [2] introduces a robust state-of-
the-art VPC framework, called SeqSLAM, for cross-season
navigation tasks separated by months or years and opposite
seasons. However, the above mentioned frameworks rely
on image sequence measurement to cope with appearance
changes to improve the discriminative power of global fea-
tures.

Some other works address the cross-season place recogni-
tion problem by using multiple different maps for describing
different visual appearance across seasons. [3] proposed
a robust approach that can identify typical time-varying
appearance of an environment from different databases,
with the number of map databases required tending to a
constant. [15] presented a framework that uses the stored
distinct visual appearances of a workspace, to improve
place recognition on future visits, and introduced a novel
introspective process, executed between sorties. However,
direct memorization of multiple varieties of map databases
is required in this framework.

The main contribution of this paper is in presenting a prac-
tical recognition approach for single-view cross season place
recognition. The landmark verification subsystem employed
in Section II-B is inspired by the authors’ IROS14 paper [16].
A significantly extended version of the dataset presented in
the authors’ PPNIV14 paper [17] was used, and this is the
first dataset to cover the four seasons.1

II. VISUAL PLACE RECOGNITION FRAMEWORK

The VPC framework consists of three main steps: (1) land-
mark proposal, (2) landmark verification, and (3) landmark
retrieval (Fig.2). The first step proposes plausible hypotheses
of landmark within the input query image. The second
step verifies each of the proposed landmarks by mining
the library of images to find similar visual patterns. If a
landmark proposal that is consistent with a library image in
terms of both geometry and photometry exists, the landmark
is considered valid and translated into a scene descriptor.
Descriptors are also computed for all images in the map
database. The third step retrieves the database using the scene
descriptors as query. These subtasks are respectively detailed
in the following subsections.

For the above interpretation, we assume that a dictionary
or a library of random L view images will be given. The

1Project page with dataset is available at: http://rc.his.u-fukui.ac.jp/
projects.html, “Cross-Season Localization”

library images need not be associated with spatial informa-
tion such that the viewpoint and orientation are known. Such
images are cheaper than the images with spatial information
required by the map database, and are more readily available.
For example, they can be publicly available resource image
data on the web, such as Google StreetView, or a visual ex-
perience obtained by the robot itself in a previous navigation,
or shared by other colleague robots via information sharing
networks. A small subset of J appropriate library images
that are most similar to a given input image are selected
and used for interpreting the input image. Our experimental
results suggest that high recognition performance tends to be
associated with the coverage of the database images by these
library images.

To translate a given input image to the scene descriptor,
we first perform common pattern discovery (CPD) between
an input and the library images to mine a set of visual
phrases (VPs), i.e., image patches, that effectively explain
the input image. Any CPD algorithm can be adopted, but
for our purposes, we utilize the fast and stable randomized
visual phrase (RVP) algorithm in [18], which can generally
handle scale variations among objects without relying on
any image segmentation or region detection. We describe
the scene description algorithm in Sections II-A, II-B, II-
C. Next, we obtain a scene descriptor, which consists of J
pairings of

mining visual phrases for landmark discovery

landmark comparison for scene matching

Fig. 2. System overview: proposing, verifying and retrieving landmarks for
cross-season place recognition. The proposed framework consists of three
distinct steps: (1) landmarks are proposed by patch-level saliency evaluation
(red boxes in “Query”), (2) landmarks are verified by mining the image prior
to find similar patterns (red boxes in “Mined image”), and (3) landmarks
are retrieved by using the bag-of-bounding-boxes scene descriptors (colored
boxes in the bottom figure).
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• a library image ID (an integer), and
• I visual phrases (BBs on the library image).

Because a BB is a considerably lower-dimensional repre-
sentation than many existing feature descriptors such as 128
dimensional SIFT vectors, the search for similar BBs to a
query BB can be conducted quite quickly. We discuss the
database search issue in Section II-C.

A. Landmark Proposal

Landmark proposal aims at proposing plausible hypothe-
ses of landmark objects each of which is a crop of the
input query/database image. To this end, we utilize bottom
up saliency as a cue, which has proven to be effective for
unsupervised object discovery in applications such as semi-
supervised labeling and anomaly detection. In particular, we
adopt the PCA-based saliency measure in [19], as it pro-
vides state-of-the-art accuracy for saliency detection while
preserving computation efficiency.

We obtain an initial pixel-level saliency using patches
collected from the input image. The distinctiveness of a
patch is measured by comparing the patch with all other
patches. The measurement process begins by extracting a
pool of gray-scale patches (size: 9×9 pixels), each of which
is represented by an 81 dimensional patch vector. Among the
patch vectors, those that belong to homogeneous regions such
as the sky are eliminated a priori because we are interested
in only those patches that belong to foreground regions. We
eliminate them by oversegmenting the image into superpixels
using the SLIC algorithm in [20], computing variance of
pixel values for each superpixel, and retaining 25% non-
homogeneous superpixels with the highest variance. Patches
that belong to non-homogeneous superpixels are used for the
evaluation of patch’s distinctiveness. For each superpixel, the
distinctiveness score is averaged over all the pixels belonging
to the superpixel, and the averaged score is reassigned to
every pixel in the superpixel.

Then, we randomly sample a number of subimages each
of which is no larger than 50% of the area of the input image,
compute the sum of saliency scores inside each subimage;
and finally output J = 4 subimages with the highest saliency
score as the proposal of landmark objects. Examples of
landmark proposals are shown in Fig.6.

B. Landmark Verification

Landmark verification aims at verifying each land-
mark proposal (i.e., subimage) in terms of the photomet-
ric/geometric consistency between the proposal and the im-
age library. This process consists of two distinct steps: (1)
search over the image library to find the most similar J = 4
images that explain the input image, and (2) discovery of
common visual patterns between the input and the mined
library images.

In the former process, the pairwise similarity between the
input and a library images is evaluated as the number of
similar SIFT matches between the image pair. Approximate
near neighbor search (ANN) [21] is used to efficiently search
for similar SIFTs to an input query SIFT, followed by a

RANSAC step to ensure that the normalized L1-distance
between the SIFT descriptor pair is smaller than 0.4.

In the latter process, we adopt the RVP [22] to find
common visual patterns between the input and the mined li-
brary images. Given a set of pairwise SIFT correspondences,
the RVP algorithm efficiently searches for common visual
patterns between the image pair. The algorithm consists of
an iterative scoring process and post-processing. In each
iteration, the library image is independently and randomly
partitioned into M×N non-overlapping rectangular patches,
and the similarity between the input image and each patch is
evaluated in terms of the distance of BoW vectors between
the region pair. To translate a visual feature to a visual
word, we run the ANN over the library, followed by a
verification step to ensure that the normalized L1-distance
between the SIFT descriptor pair is smaller than 0.4. We
then assign their feature IDs as the visual words, i.e., multiple
visual words per feature. In the implementation, we use the
histogram intersection as the pairwise distance measure for
BoW histograms. Note that after K times of iterations, we
have M × N × K = 32×16×200 patches, and every pixel
belongs to exactly K patches. In the post-processing process,
the score of each pixel is obtained as the average of the
similarity values of the K patches to which the pixel belongs.
The final output of the RVP algorithm is the voting map,
whose pixel value represents the likelihood of the target
landmark proposed.

We execute the abovementioned RVP algorithm and use
the resulting voting map to compute the BB whose sum of
scores over all the pixels inside the BB are higher than all
other potential BBs. Further, the integral image [23] can be
used to efficiently compute the sum of the values in the
rectangular regions defined by these BBs. The size of a BB
should be sufficiently small so that it can be localized well,
and should not exceed 10% of the area of the library image.

C. Landmark Retrieval

The scene descriptor consists of J pairings of a library
image ID (i.e., an integer) and a set of I visual phrases
(BBs on the library image). A BB carries the appearance
information of a VP as it indicates the VP region within the
library image. Note that our current implementation ensures
that each BB is well localized, i.e., smaller than 10% of the
image area, and we have already found that there is no need
to penalize the size of the BBs. Let Overlap(Bi, j,B′

i′, j′)
denote the area of overlap between a given BB pair Bi, j,
B′

i′, j′ when they belong to the same library image or zero
otherwise. A large value for the overlap indicates that the
VPs cropped by the BBs are similar between the image pair,
and vice versa. By aggregating the VP-level similarity, we
obtain the image-level similarity:

fV P(I ,I ′) =
1
IJ

J

∑
j=1

I

∑
i=1

max
i′, j′

Overlap(Bi, j,B
′
i′, j′). (1)

Since a BB can be compactly represented by a 4D parameter
(a considerably lower-dimensional representation than other
local feature descriptors such as 128-dim SIFT vectors), the
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search for BBs similar to a query BB can be conducted very
rapidly.

The proposed scene descriptor tends to produce less mean-
ingful results when there is no common visual pattern (i.e.,
VP) between the input and the library scenes. We propose the
use of the traditional BoW scene descriptor complementary
with the proposed scene descriptor, and a modified image-
level similarity:

f (I ,I ′) =CV P · fV P(I ,I ′)+CVW · fVW (I ,I ′), (2)

where CV P and CVW denote the weighting coefficients and
CV P ≫ CVW . We use the BoW method in [1] and view its
output score (i.e., likelihood) value as the similarity fVW .

III. EXPERIMENTAL RESULTS

We evaluate the performance over several datasets that are
collected in different seasons and paths. The dataset used
in these experiments consists of collections of view images

Fig. 3. Experimental environments and viewpoint paths.

Fig. 4. Datasets. Image datasets are collected for various types of scenes
and across seasons (top). The dataset consists of three datasets of query,
database, and library images collected during four different seasons over a
year (bottom).

taken around a university campus, using a hand-held camera
as a monocular vision sensor.

A. Settings

Fig.3 and Fig.4 show a bird’s eye view of our experimental
environments, viewpoint paths, and examples of the dataset.
We consider a typical scenario that considers view images
that are taken relatively far (1m-5m) from each other [3].
Occlusion is severe in the entire scenes, and people and vehi-
cles are dynamic entities occupying the scene. We traversed
each of the three paths #1-#3 three times, collected three
independent collections of images and use each for query,
library and database image collection. The datasets have been
collected across four seasons over a year and cover all the
four seasons, as shown in Fig.4. In total, we obtained 3 × 3
× 4 image collections.

B. Map Retrieval Task

Fig.5 shows the input query image, the ground truth image,
and the database images top-ranked by the BoW method
and by the proposed method. Both the BoW and proposed
methods tend to return database images that are similar to
the query image to some extent. However, the BoW method
tends to fail when there are confusing images in the database
whose appearance is partially similar to the query image but
with a different structure.

Fig.6 shows example results of proposing, verifying, and
retrieving landmarks. For landmark discovery, a set of J = 4
library images are selected out of the size L= 100 library and
I = 4 VPs (i.e., landmarks) for each library image are learnt,
on the basis of ANN and CPD, in our method, as described
in II-B. Discriminative landmarks are successfully found for
all the image pairs shown here. However, the reasons for
each success vary depending on the content of the input
and library images. In the first case, a gate that commonly
appears in the input query/database image and a library

Fig. 5. Examples of scene retrievals. From left to right, each panel shows
a query image, the ground truth image, the database image top-ranked by
the BoW method and by the proposed method.
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Fig. 6. Examples of proposing, verifying and retrieving landmarks. From left to right, input image, saliency image, landmark proposal (blue bounding
box), mined library image, landmark discovered w.r.t. the library image’s coordinate, and the top-ranked database image.

TABLE I
SCENE RETRIEVAL PERFORMANCE IN %

Dataset
Query
DB

SP SU AU WI Avg.
SU AU WI AU WI SP WI SP SU SP SU AU

FAB-MAP 34.5 34.8 22.1 25.2 31.0 29.8 37.4 30.4 36.4 37.2 41.7 42.0 33.5
VP #BB=1

#BB=2
#BB=4
#BB=8

27.5 32.6 18.5 25.2 23.9 22.9 31.4 27.1 30.7 29.5 30.8 38.7 28.2
26.0 31.9 17.6 25.0 20.3 21.2 30.3 26.4 29.8 27.0 29.7 38.4 27.0
25.4 31.1 17.1 24.9 19.8 19.5 29.8 26.4 28.4 25.1 31.7 35.9 26.3
25.0 30.9 17.2 24.7 19.0 18.6 28.9 25.1 28.5 24.3 28.6 36.4 25.6

image is mined via the landmark discovery. In the second
case, there are mainly two dominant objects, a tall building
and a small house and between them, the latter is selected as
the discriminative landmark, as the appearance of the house
has not changed between the input and the library images. In
the third case, large portion of the scene is occupied by fresh
snow cover, and despite the difficulty, a part of a building
is successfully selected as the discriminative landmark. In
the fourth case, a part of one of the dominant tall building
object is selected as the landmark. In the fifth case, the
building object appearing in the library image is not identical
to the one appearing in the input scene, but it is selected
as a landmark object in our method and successful scene
matching is achieved.

C. Performance Results

Table I presents the performance results. We evaluated
the proposed visual phrase -based method (“VP”) in terms
of the retrieval accuracy and compare it with one of the
state-of-the-art BoW method (“FAB-MAP”) introduced in
[1]. For the BoW method, we used the same code as the
authors in [1]. A series of independent 200 × 2 retrievals
are conducted for each of the 200 random query images
for each two different paths, which respectively consist

of path1+path2 and path2+path3 as shown in Fig.3. The
retrieval performance was measured in terms of the averaged
normalized rank (ANR) in percentage %, which is a ranking-
based retrieval performance measure, where a smaller value
more favorable. To evaluate ANR, the rank assigned to the
ground-truth relevant image was evaluated for each of the
200 independent retrievals, and then the rank was normalized
by the database size and averaged over the 200 retrievals.
Table I shows that our approach outperformed the BoW
method in most of the retrievals considered here.

D. Dependency on Image Prior

Table II presents an investigation of the influence of
different settings of image prior on the map retrieval perfor-
mance. In this study, we are particularly interested in how
comprehensively these library images need to cover the path.
For example if any building is missing in the library set, it is
more difficult for our image prior based method to produce
meaningful results. To this end we conducted independent
retrieval experiments using different sets of library images,
which consist of X[%] samples from the original library
and (100-X)[%] samples from another library, for different
settings of coverage ratio X = 100%, 75%, 50%, 25%, 0%.
The experimental results shown in Table II suggest that a
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TABLE II
DEPENDENCY ON IMAGE PRIOR

Dataset
Query
DB

SP SU AU WI Avg.
SU AU WI AU WI SP WI SP SU SP SU AU

VP 100%
75%
50%
25%
0%

25.4 31.1 17.1 24.9 19.8 19.5 29.8 26.4 28.4 25.1 31.7 35.9 26.3
29.7 33.4 19.8 25.8 22.9 20.4 31.4 27.6 30.7 27.7 33.7 41.7 28.7
28.6 32.9 20.6 26.4 24.8 21.7 32.5 28.5 32.3 30.8 34.9 43.5 29.8
30.7 33.1 21.2 27.5 28.3 25.5 32.8 29.4 31.8 32.9 37.0 43.4 31.1
32.7 33.9 22.5 27.1 28.9 29.9 35.1 31.6 33.1 38.0 37.5 43.7 32.8

high localization performance tends to be associated with the
coverage X% of the robot’s route by these library images.
However, the proposed method has a comparable or slightly
better performance than BoW even when the coverage is 0%.

E. Frequency of library images

Fig.7 summarizes the frequency of individual library im-
ages being used for scene interpretation. In this study, we
used all the datasets ({AU,WI,SP,SU} × paths #1-#3) as
test images. As shown in the graph, the frequency is quite
different among different datasets, and a small set of library
images is more than 10 times frequently used than half of
the library images. The most frequently used library images
tend to have rich object information while the least frequently
used ones tend to have non-distinctive objects such as the sky
and trees. The results suggest that a relatively small number
of library images would suffice, and intelligent selection of
a small number of such useful library images should be
addressed in our future work.

F. Comparison Across Seasons

We also investigate the impact of the choice of different
season’s databases on the retrieval performance. In this study,
we use one dataset (e.g., AU) as query images, and for each
query image, we perform a pair of independent map retrievals
using different season datasets (e.g., WI-SP pair) as database
images, evaluate the map retrieval results in terms of the
normalized ranks (e.g., rWI , and rSP), and then computes
the difference in the map retrieval performance (e.g., ∆r =
rWI −rSP). Fig.8 shows the results for different query datasets
AU, WI, SP and SU. The performance during the retrieval
of SP database using a WI query is higher than during the
retrieval of the AU database. The performance during the
retrieval of the SU database is higher than during that for the
SP database. In addition, performance during the retrieval of
the WI database using an SP is higher than that for the AU

Fig. 7. Frequency of library images.

database. We observe that the retrieval performance tends
to be dependent on the appearance similarity between query
and library images, as seen in the abovementioned cases.

G. NBNN Image-to-Class Distance Measure

We conducted a final investigation on an alternative image
prior based scene comparison scheme, in place of the simple
L1 distance and histogram intersection in Section II-B. This
study is motivated by the recent success of NBNN image-
to-distance measure in [24], which has also been applied
to cross domain scene classification tasks [25]. From our
viewpoint of localization and mapping, the NBNN measure
has several desirable properties: 1) fine vocabulary without
relying on vector quantization, 2) lightweight training and
efficient classification, and 3) incremental learning of a scene
classifier (i.e., perception model) that can be updated by
incorporating new training data (i.e., measurements). The
NBNN measure works under the following two conditions:
1) raw visual features are used without vector quantization,
and 2) image-to-class (rather than image-to-image) distance
is used for scene comparison. In the proposed VP framework,
condition (1) is satisfied because we do not rely on vector
quantization. For condition (2), we view places (i.e., database
images) as independent classes and for each class, we prepare
a class specific set of training features. The class specific
set of training features for each i-th class is obtained by
searching through library features for the nearest neighbor
(NN) to each feature j = 1, · · · ,Ji in the class (i.e., database
image) of interest. In this study, we consider a simple scene
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Fig. 8. Comparison across seasons. Horizontal axis: sorted query ID.
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descriptor that consists of Ji IDs of library features, and not
consider the BBs of visual phrases in Section II. In this
case, distance between a pairing of query and database scene
descriptors is evaluated by

dist =
n

∑
i=1

||qi − f NN(qi)||2, (3)

where qi denotes the features extracted from the query scene
image, and f NN(qi) indicates the corresponding NN library
feature that belongs to the database descriptor. The scene
descriptor stores only IDs for mapped images to compact
the database, and the scene comparison uses both IDs and
distance values for query images. Fig.9 shows the results
for the NBNN measure. By comparing the data in Fig.9
and Table II, we find that the NBNN measure is effective
for many of the cases considered here. However, this comes
with a high computational cost. Firstly, by memorizing the
scene descriptor that consists of many library features’ ID,
the same number of SIFT features should be extracted from
the database image of interest. Secondly, the NBNN measure
requires iterating the NN search for each query feature of
interest. One of our future works will be to extend the
proposed image prior -based scene descriptor to integrate
more robust scene comparison schemes, including NBNN.

IV. CONCLUSIONS

The main contribution of this paper is that it addresses
the challenging tasks of single-view cross-season place
recognition and propose a novel discriminative and compact
scene descriptor. In contrast to the widely used BoW scene
descriptor that relies on vector quantized feature vectors, our
criteria for scene matching is based on raw image matching,
which is quantization free. Instead of direct raw image
matching between query and database images that is space
time intractable, we propose raw image matching between a
query/database image and a library of raw image data, such
as publicly available image data on the web. We developed
a practical place recognition system, by employing efficient
and reliable subsystems for raw image matching, including
RANSAC geometric verification, common pattern discovery,
and approximate near neighbor search. Experimental results
show that the proposed framework tends to produce stable

Fig. 9. Results for NBNN image-to-class distance measure.

recognition results despite the fact that our scene descriptor
is significantly space/time efficient.
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